88 research outputs found

    Interpolation and scattered data fitting on manifolds using projected Powellā€“Sabin splines

    Get PDF
    We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(UĪ¾ , Ī¾)}Ī¾āˆˆ satisfying certain conditions of smooth dependence on Ī¾. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function

    Scattered data fitting on surfaces using projected Powell-Sabin splines

    Get PDF
    We present C1 methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ī© embedded into R3. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorithms with some numerical examples, which, in particular, confirm the O(h3) order of convergence as the data becomes dens

    Local RBF approximation for scattered data fitting with bivariate splines

    Get PDF
    In this paper we continue our earlier research [4] aimed at developing effcient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, signicantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given

    Transfinite thin plate spline interpolation

    Full text link
    Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional

    Basis Functions for Linear-Scaling First-Principles Calculations

    Full text link
    In the framework of a recently reported linear-scaling method for density-functional-pseudopotential calculations, we investigate the use of localized basis functions for such work. We propose a basis set in which each local orbital is represented in terms of an array of `blip functions'' on the points of a grid. We analyze the relation between blip-function basis sets and the plane-wave basis used in standard pseudopotential methods, derive criteria for the approximate equivalence of the two, and describe practical tests of these criteria. Techniques are presented for using blip-function basis sets in linear-scaling calculations, and numerical tests of these techniques are reported for Si crystal using both local and non-local pseudopotentials. We find rapid convergence of the total energy to the values given by standard plane-wave calculations as the radius of the linear-scaling localized orbitals is increased.Comment: revtex file, with two encapsulated postscript figures, uses epsf.sty, submitted to Phys. Rev.

    Stable approximation and interpolation with C1 quartic bivariate splines

    No full text
    We show how two recent algorithms for computing C1 quartic interpolating splines can be stabilized to ensure that, for smooth functions, they provide full approximation power with approximation constants depending only on the smallest angle in the triangulation

    Fitting star-like surfaces using trigonometric/polynomial tensor splines

    No full text
    • ā€¦
    corecore